Published in

Public Library of Science, PLoS ONE, 7(7), p. e40816, 2012

DOI: 10.1371/journal.pone.0040816

Links

Tools

Export citation

Search in Google Scholar

The Effect of Vorinostat on the Development of Resistance to Doxorubicin in Neuroblastoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Histone deacetylase (HDAC) inhibitors, especially vorinostat, are currently under investigation as potential adjuncts in the treatment of neuroblastoma. The effect of vorinostat co-treatment on the development of resistance to other chemotherapeutic agents is unknown. In the present study, we treated two human neuroblastoma cell lines [SK-N-SH and SK-N-Be(2)C] with progressively increasing doses of doxorubicin under two conditions: with and without vorinsotat co-therapy. The resultant doxorubicin-resistant (DoxR) and vorinostat-treated doxorubicin resistant (DoxR-v) cells were equally resistant to doxorubicin despite significantly lower P-glycoprotein expression in the DoxR-v cells. Whole genome analysis was performed using the Ilumina Human HT-12 v4 Expression Beadchip to identify genes with differential expression unique to the DoxR-v cells. We uncovered a number of genes whose differential expression in the DoxR-v cells might contribute to their resistant phenotype, including hypoxia inducible factor-2. Finally, we used Gene Ontology to categorize the biological functions of the differentially expressed genes unique to the DoxR-v cells and found that genes involved in cellular metabolism were especially affected.