Published in

MDPI, Molecules, 1(27), p. 98, 2021

DOI: 10.3390/molecules27010098

Links

Tools

Export citation

Search in Google Scholar

Pretreatment of Plastic Waste: Removal of Colorants from HDPE Using Biosolvents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Plastics recycling remains a challenge due to the relatively low quality of the recycled material, since most of the developed recycling processes cannot deal with the additives present in the plastic matrix, so the recycled products end up in lower-grade applications. The application of volatile organic solvents for additives removal is the preferred choice. In this study, pretreatment of plastic packaging waste to remove additives using biosolvents was investigated. The plastic waste used was high-density polyethylene (HDPE) with blue and orange colorants (pigment and/or dye). The first step was to identify the type of colorants present in the HDPE, and we found that both plastics presented only one colorant that was actually a pigment. Then, limonene, a renewable solvent, was used to solubilize HDPE. After HDPE dissolution, a wide range of alcohols (mono-, di-, and tri-alcohols) was evaluated as antisolvents in order to selectively precipitate the polymer and maximize its purity. The use of limonene as solvent for plastic dissolution, in combination with poly-alcohols with an intermediate alkyl chain length and a large number of hydroxyl (OH) groups, was found to work best as an antisolvent (1,2,3-propanetriol and 1,2,4-butanetriol), leading to a removal of up to 94% and 100% of the blue and orange pigments, respectively. Finally, three cycles of extraction were carried out, proving the capability of the solvent and antisolvent to be recovered and reused, ensuring the economic viability and sustainability of the process. This pretreatment provides a secondary source of raw materials and revenue for the recycling process, which may lead to an increase in the quality of recycled polymers, contributing to the development of an economical and sustainable recycling process.