Published in

MDPI, Catalysts, 1(12), p. 26, 2021

DOI: 10.3390/catal12010026

Links

Tools

Export citation

Search in Google Scholar

Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Here, we report the fabrication of nZVI by the wet chemical technique in the presence of ethanol using ferric iron and sodium borohydride as the reducing agents under ambient conditions. The obtained nZVI particles are mainly in a zero-valent oxidation state and do not undergo significant oxidation for several weeks. The structural and morphological parameters of nZVI were investigated by using UV, XRD, SEM, EDX, TEM, and DLS analysis. The optical nature, bandgap energy, and absorption edge were all revealed by the UV–visible spectrum. The phase development and crystallinity of nZVI particles were shown by the XRD pattern. The morphological investigation revealed that the nanoparticles were spherical with an average size of 34–110 nm by using ImageJ software, and the elemental analysis was analyzed using EDX. Furthermore, the catalytic treatment performance of domestic wastewater was evaluated in terms of pH, COD (chemical oxygen demand) solubilization, total solids (TS), volatile solids (VS), phosphorous, and total nitrogen (TN) reduction under aerobic and anaerobic operating conditions. The effluent was subjected to a process evaluation with a different range (100–500 mg/L) of nZVI dosages. The COD solubilization and suspended solids reduction were significantly improved in the anaerobic condition in comparison to the aerobic condition. Furthermore, the effect of nZVI on phosphorous (PO43−) reduction was enhanced by the electrons of iron ions. The high concentration of nZVI dosing has a positive impact on COD solubilization and phosphorous removal regardless of the aeration condition with 400 mg/L of nZVI dosage.