Al-Jabar : Jurnal Pendidikan Matematika, 2(12), p. 273-282, 2021
El Nino can harm many sectors in Indonesia by reducing precipitation levels in some areas. The occurrence of El Nino can be estimated by observing the sea surface temperature in Nino 3.4 region. Therefore, an accurate model on sea surface temperature prediction in Nino 3.4 region is needed to optimize the estimation of the occurrence of El Nino, such as ECMWF. However, the prediction model released by ECMWF still consists of some systematic errors or biases. This research aims to correct these biases using statistical bias correction techniques and evaluate the prediction model before and after correction. The statistical bias correction uses linear scaling, variance scaling, and distribution mapping techniques. The results show that statistical bias correction can reduce the prediction model bias. Also, the distribution mapping and variance scaling are more accurate than the linear scaling technique. Distribution mapping has better RMSE in December-March, and variance scaling has better RMSE in April-June also in October and November. However, in July-September, prediction from ECMWF has better RMSE. The application of statistical bias correction techniques has the highest refinement in January-March at the first lead time and in April at the fifth until the seventh lead time.