Published in

MDPI, Animals, 2(12), p. 129, 2022

DOI: 10.3390/ani12020129

Links

Tools

Export citation

Search in Google Scholar

Resistance Patterns, mcr-4 and OXA-48 Genes, and Virulence Factors of Escherichia coli from Apennine Chamois Living in Sympatry with Domestic Species, Italy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to determine and characterize potential resistance mechanisms against selected Critically Important Antibiotics in Escherichia coli isolates collected from wild and domestic ruminants living in the Maiella National Park, in Central Italy. A total of 38 isolates were obtained from red deer, Apennine chamois, cattle, sheep, and goats grazing in lands with different levels of anthropic pressure. Antimicrobial susceptibility was determined by Minimal Inhibitory Concentration testing, showing phenotypic resistance to colistin, meropenem, or ceftazidime in 9 isolates along with one bacterial strain being resistant to three of the tested antibiotics. In addition, the biomolecular assays allowed the amplification of the genes conferring the colistin (mcr-4), the carbapenems (OXA-48), penicillins and cephalosporins (TEM, SHV, CMY-1, CMY-2) resistance. In order to describe the potential pathogenicity of isolates under study, virulence genes related to Shiga toxin-producing (STEC) and enteropathogenic (EPEC) pathovars were identified. This study is the first report of mcr-4 and OXA-48 genes in resistant E. coli harboring virulence genes in Italian wildlife, with special regard to Apennine chamois and red deer species. The multidisciplinary approach used in this study can improve the early detection of emerging antibiotic resistance determinants in human-animal-environment interfaces by means of wildlife monitoring.