Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Epidemiology and Infection, (150), 2022

DOI: 10.1017/s0950268821002764

Links

Tools

Export citation

Search in Google Scholar

Combining antibody markers for serosurveillance of SARS-CoV-2 to estimate seroprevalence and time-since-infection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Serosurveillance is an important epidemiologic tool for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), used to estimate infection rates and the degree of population immunity. There is no general agreement on which antibody biomarker(s) should be used, especially with the rollout of vaccines globally. Here, we used random forest models to demonstrate that a single spike or receptor-binding domain (RBD) antibody was adequate for classifying prior infection, while a combination of two antibody biomarkers performed better than any single marker for estimating time-since-infection. Nucleocapsid antibodies performed worse than spike or RBD antibodies for classification, but can be useful for estimating time-since-infection, and in distinguishing infection-induced from vaccine-induced responses. Our analysis has the potential to inform the design of serosurveys for SARS-CoV-2, including decisions regarding a number of antibody biomarkers measured.