Published in

Twelfth International Conference on Information Optics and Photonics, 2021

DOI: 10.1117/12.2606521

Optica, Optics Letters, 4(47), p. 969, 2022

DOI: 10.1364/ol.442171

Links

Tools

Export citation

Search in Google Scholar

Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present a 3D label-free refractive index (RI) imaging technique based on single-exposure intensity diffraction tomography (sIDT) using a color-multiplexed illumination scheme. In our method, the chromatic light-emitting diodes (LEDs) corresponding R/G/B channels in an annular programmable ring provide oblique illumination geometry that precisely matches the objective’s numerical aperture. A color intensity image encoding the scattering field of the specimen from different directions is captured, and monochromatic intensity images concerning three color channels are separated and then used to recover the 3D RI distribution of the object following the process of IDT. In addition, the axial chromatic dispersion of focal lengths at different wavelengths introduced by the chromatic aberration of the objective lens and the spatial position misalignment of the ring LED source in the imaging system’s transfer functions modeling are both corrected to significantly reduce the artifacts in the slice-based deconvolution procedure for the reconstruction of 3D RI distribution. Experimental results on MCF-7, Spirulina algae, and living Caenorhabditis elegans samples demonstrate the reliable performance of the sIDT method in label-free, high-throughput, and real-time (∼24 fps) 3D volumetric biological imaging applications.