Published in

MDPI, Water, 2(14), p. 208, 2022

DOI: 10.3390/w14020208

Links

Tools

Export citation

Search in Google Scholar

Mind the Gap! Reconciling Environmental Water Requirements with Scarcity in the Murray–Darling Basin, Australia

Journal article published in 2022 by Matthew J. Colloff ORCID, Jamie Pittock ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Murray–Darling Basin Plan is a $AU 13 billion program to return water from irrigation use to the environment. Central to the success of the Plan, commenced in 2012, is the implementation of an Environmentally Sustainable Level of Take (ESLT) and a Sustainable Diversion Limit (SDL) on the volume of water that can be taken for consumptive use. Under the enabling legislation, the Water Act (2007), the ESLT and SDL must be set by the “best available science.” In 2009, the volume of water to maintain wetlands and rivers of the Basin was estimated at 3000–7600 GL per year. Since then, there has been a steady step-down in this volume to 2075 GL year due to repeated policy adjustments, including “supply measures projects,” building of infrastructure to obtain the same environmental outcomes with less water. Since implementation of the Plan, return of water to the environment is falling far short of targets. The gap between the volume required to maintain wetlands and rivers and what is available is increasing with climate change and other risks, but the Plan makes no direct allowance for climate change. We present policy options that address the need to adapt to less water and re-frame the decision context from contestation between water for irrigation versus the environment. Options include best use of water for adaptation and structural adjustment packages for irrigation communities integrated with environmental triage of those wetlands likely to transition to dryland ecosystems under climate change.