Published in

Oxford University Press, The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 2022

DOI: 10.1093/gerona/glac013

Links

Tools

Export citation

Search in Google Scholar

Free-Living Gait Cadence Measured by Wearable Accelerometer: A Promising Alternative to Traditional Measures of Mobility for Assessing Fall Risk

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Wearable devices have become widespread in research applications, yet evidence on whether they are superior to structured clinic-based assessments is sparse. In this manuscript, we compare traditional, laboratory-based metrics of mobility with a novel accelerometry-based measure of free-living gait cadence for predicting fall rates. Methods Using negative binomial regression, we compared traditional in-clinic measures of mobility (6-minute gait cadence, speed, and distance, and 4-m gait speed) with free-living gait cadence from wearable accelerometers in predicting fall rates. Accelerometry data were collected with wrist-worn Actigraphs (GT9X) over 7 days in 432 community-dwelling older adults (aged 77.29 ± 5.46 years, 59.1% men, 80.2% White) participating in the Study to Understand Fall Reduction and Vitamin D in You. Falls were ascertained using monthly calendars, quarterly contacts, and ad hoc telephone reports. Accelerometry-based free-living gait cadence was estimated with the Adaptive Empirical Pattern Transformation algorithm. Results Across all participants, free-living cadence was significantly related to fall rates; every 10 steps per minute higher cadence was associated with a 13.2% lower fall rate (p = .036). Clinic-based measures of mobility were not related to falls (p > .05). Among higher-functioning participants (cadence ≥100 steps/minute), every 10 steps per minute higher free-living cadence was associated with a 27.7% lower fall rate (p = .01). In participants with slow baseline gait (gait speed <0.8 m/s), all metrics were significantly associated with fall rates. Conclusion Data collected from biosensors in the free-living environment may provide a more sensitive indicator of fall risk than in-clinic tests, especially among higher-functioning older adults who may be more responsive to intervention. Clinical Trial Registration NCT02166333