Published in

MDPI, Diagnostics, 2(12), p. 247, 2022

DOI: 10.3390/diagnostics12020247

Links

Tools

Export citation

Search in Google Scholar

Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Machine learning results based on radiomic analysis are often not transferrable. A potential reason for this is the variability of radiomic features due to varying human made segmentations. Therefore, the aim of this study was to provide comprehensive inter-reader reliability analysis of radiomic features in five clinical image datasets and to assess the association of inter-reader reliability and survival prediction. In this study, we analyzed 4598 tumor segmentations in both computed tomography and magnetic resonance imaging data. We used a neural network to generate 100 additional segmentation outlines for each tumor and performed a reliability analysis of radiomic features. To prove clinical utility, we predicted patient survival based on all features and on the most reliable features. Survival prediction models for both computed tomography and magnetic resonance imaging datasets demonstrated less statistical spread and superior survival prediction when based on the most reliable features. Mean concordance indices were Cmean = 0.58 [most reliable] vs. Cmean = 0.56 [all] (p < 0.001, CT) and Cmean = 0.58 vs. Cmean = 0.57 (p = 0.23, MRI). Thus, preceding reliability analyses and selection of the most reliable radiomic features improves the underlying model’s ability to predict patient survival across clinical imaging modalities and tumor entities.