Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-28080-7

Links

Tools

Export citation

Search in Google Scholar

Correction of a Factor VIII genomic inversion with designer-recombinases

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDespite advances in nuclease-based genome editing technologies, correcting human disease-causing genomic inversions remains a challenge. Here, we describe the potential use of a recombinase-based system to correct the 140 kb inversion of the F8 gene frequently found in patients diagnosed with severe Hemophilia A. Employing substrate-linked directed molecular evolution, we develop a coupled heterodimeric recombinase system (RecF8) achieving 30% inversion of the target sequence in human tissue culture cells. Transient RecF8 treatment of endothelial cells, differentiated from patient-derived induced pluripotent stem cells (iPSCs) of a hemophilic donor, results in 12% correction of the inversion and restores Factor VIII mRNA expression. In this work, we present designer-recombinases as an efficient and specific means towards treatment of monogenic diseases caused by large gene inversions.