Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Fluids, 1(7), p. 39, 2022

DOI: 10.3390/fluids7010039

Links

Tools

Export citation

Search in Google Scholar

A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

For safety and survival at sea and on the shore, wave predictions are essential for marine-related activities, such as harbor operations, naval navigation, and other coastal and offshore activities. In general, wave height predictions rely heavily on numerical simulations. The computational cost of such a simulation can be very high (and it can be time-consuming), especially when considering a complex coastal area, since these simulations require high-resolution grids. This study utilized a deep learning technique called bidirectional long short-term memory (BiLSTM) for wave forecasting to save computing time and to produce accurate predictions. The deep learning method was trained using wave data obtained by a continuous numerical wave simulation using the SWAN wave model over a 20-year period with ECMWF ERA-5 wind data. We utilized highly spatially correlated wind as input for the deep learning method to select the best feature for wave forecasting. We chose an area with a complex geometry as the study case, an area in Indonesia’s Java Sea. We also compared the results of wave prediction using BiLSTM with those of other methods, i.e., LSTM, support vector regression (SVR), and a generalized regression neural network (GRNN). The forecasting results using the BiLSTM were the best, with a correlation coefficient of 0.96 and an RMSE value of 0.06.