Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Agronomy, 2(12), p. 232, 2022

DOI: 10.3390/agronomy12020232

Links

Tools

Export citation

Search in Google Scholar

Reversion of Perennial Biomass Crops to Conserve C and N: A Meta-Analysis

Journal article published in 2022 by Enrico Martani ORCID, Andrea Ferrarini ORCID, Stefano Amaducci
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Perennial crops have been proposed as a solution to couple the production of sustainable biomass for multiple uses with several environmental benefits such as soil C storage. Concerns exist that the C sequestered in soil could be lost in a few years after the perennial crops are reverted to arable land. In this study, the current knowledge on the effects of perennial crop reversion on soil C and N was summarized by performing a meta-analysis. One year after the reversion a significant increase of soil C and N stocks (+15% and +12% respectively) were found in the 0–30 cm layer, while in the time interval between the second to fifth year after the reversion, there were no significant increases or decreases of soil C and N. The incorporation of the belowground biomass (BGB) into the soil at reversion plays a key role in the fate of soil C and N stocks after the reversion. In fact, when reverting a multiannual biomass crop there are significant losses of soil C and N. In contrast, when reverting a perennial biomass crop (PBCs) such as rhizomatous herbaceous or SRC woody crops there are no losses of soil C and N. The BGB of perennial grass is mainly composed of root systems and not of a huge amount of belowground organs as in the case of PBCs. The shredding of the BGB and its transformation as particulate organic matter (POM) represent the major pulse C input at the reversion that can undergo further stabilization into a mineral-associated organic matter (MAOM) fraction. Introducing PBCs into crop rotation resulted in an effective carbon farming solution with a potential positive legacy for food crops in terms of achievement of both climate and soil fertility goals.