Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Plant Systematics and Evolution, 1-2(277), p. 75-84

DOI: 10.1007/s00606-008-0105-0

Links

Tools

Export citation

Search in Google Scholar

Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plastid DNA sequences have been widely used by systematists for reconstructing plant phylogenies. The utility of any DNA region for phylogenetic analysis is determined by ease of amplification and sequencing, confidence of assessment in phylogenetic character alignment, and by variability across broad taxon sampling. Often, a compromise must be made between using relatively highly conserved coding regions or highly variable introns and intergenic spacers. Analyses of a combination of these types of DNA regions yield phylogenetic structure at various levels of a tree (i.e., along the spine and at the tips of the branches). Here, we demonstrate the phylogenetic utility of a heretofore unused portion of a plastid protein-coding gene, hypothetical chloroplast open reading frame 1 (ycf1), in orchids. All portions of ycf1 examined are highly variable, yet alignable across Orchidaceae, and are phylogenetically informative at the level of species. In Orchidaceae, ycf1 is more variable than matK both in total number of parsimony informative characters and in percent variability. The nrITS region is more variable than ycf1, but is more difficult to align. Although we only demonstrate the phylogenetic utility of ycf1 in orchids, it is likely to be similarly useful among other plant taxa.