Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2022

DOI: 10.1093/mnras/stac145

Links

Tools

Export citation

Search in Google Scholar

The far-infrared/radio correlation for a sample of strongly lensed dusty star-forming galaxies detected by Herschel

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We investigate the radio-far infrared (FIR) correlation for a sample of 28 bright high-redshift (1 ≲ z ≲ 4) star-forming galaxies selected in the FIR from the Herschel-ATLAS fields as candidates to be strongly gravitationally lensed. The radio information comes either from high sensitivity dedicated ATCA observations at 2.1 GHz or from cross-matches with the FIRST survey at 1.4 GHz. By taking advantage of source brightness possibly enhanced by lensing magnification, we identify a weak evolution with redshift out to z ≲ 4 of the FIR-to-radio luminosity ratio qFIR. We also find that the qFIR parameter as a function of the radio power $L_{1.4\, \rm GHz}$ displays a clear decreasing trend, similarly to what is observed for optically/radio selected lensed quasars found in literature, yet covering a complementary region in the $q_{\rm FIR}-L_{1.4\, \rm GHz}$ diagram. We interpret such a behavior in the framework of an in-situ galaxy formation scenario, as a result of the transition from an early dust-obscured star-forming phase (mainly pinpointed by our FIR selection) to a late radio-loud quasar phase (preferentially sampled by the optical/radio selection).