Published in

American Astronomical Society, Astrophysical Journal Letters, 1(925), p. L6, 2022

DOI: 10.3847/2041-8213/ac42d8

Links

Tools

Export citation

Search in Google Scholar

Solar Wind Ion Sputtering of Sodium from Silicates Using Molecular Dynamics Calculations of Surface Binding Energies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract For nearly 40 yr, studies of exosphere formation on airless bodies have been hindered by uncertainties in our understanding of the underlying ion collisional sputtering by the solar wind (SW). These ion impacts on airless bodies play an important role in altering their surface properties and surrounding environment. Much of the collisional sputtering data needed for exosphere studies come from binary collision approximation (BCA) sputtering models. These depend on the surface binding energy (SBE) for the atoms sputtered from the impacted material. However, the SBE is not reliably known for many materials important for planetary science, such as plagioclase feldspars and sodium pyroxenes. BCA models typically approximate the SBE using the cohesive energy for a monoelemental solid. We use molecular dynamics (MD) to provide the first accurate SBE data we are aware of for Na sputtered from the above silicate minerals, which are expected to be important for exospheric formation at Mercury and the Moon. The MD SBE values are ∼8 times larger than the Na monoelemental cohesive energy. This has a significant effect on the predicted SW ion sputtering yield and energy distribution of Na and the formation of the corresponding Na exosphere. We also find that the SBE is correlated with the coordination number of the Na atoms within the substrate and with the cohesive energy of the Na-bearing silicate. Our MD SBE results will enable more accurate BCA predictions for the SW ion sputtering contribution to the Na exosphere of Mercury and the Moon.