Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Breath Research, 2(16), p. 027102, 2022

DOI: 10.1088/1752-7163/ac4fae

Links

Tools

Export citation

Search in Google Scholar

Non-invasive breath collection in murine models using a newly developed sampling device <sup>*</sup>

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Volatile organic compounds (VOCs) in exhaled breath have the potential to be used as biomarkers for screening and diagnosis of diseases. Clinical studies are often complicated by both modifiable and non-modifiable factors influencing the composition of VOCs in exhaled breath. Small laboratory animal studies contribute in obtaining fundamental insight in alterations in VOC composition in exhaled breath and thereby facilitate the design and analysis of clinical research. However, long term animal experiments are often limited by invasive breath collection methods and terminal experiments. To overcome this problem, a novel device was developed for non-invasive breath collection in mice using glass nose-only restrainers thereby omitting the need of anesthetics. C57Bl/6 J mice were used to test reproducibility and different air sampling settings for air-flow (ml min−1) and time (minutes). Exhaled air was collected on desorption tubes and analysed for VOCs by gas chromatography time-of-flight mass spectrometry (GC-tof-MS). In total 27 compounds were putatively identified and used to assess the variability of the VOC measurements in the breath collections. Best reproducibility is obtained when using an air flow of 185 ml min−1 and a collection time of 20 min. Due to the non-invasive nature of breath collections in murine models, this device has the potential to facilitate VOC research in relation to disturbed metabolism and or disease pathways.