Dissemin is shutting down on January 1st, 2025

Published in

Copernicus Publications, Earth System Science Data, 1(14), p. 229-249, 2022

DOI: 10.5194/essd-14-229-2022

Links

Tools

Export citation

Search in Google Scholar

Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of heat in the climate system. Monitoring the EEI is therefore necessary to better understand the Earth's warming climate. Measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5–1 W m−2) compared to the amount of energy entering and leaving the climate system (∼340 W m−2). Since the ocean absorbs more than 90 % of the excess energy stored by the Earth system, estimating the ocean heat content (OHC) change provides an accurate proxy of the EEI. This study provides a space geodetic estimation of the OHC changes at global and regional scales based on the combination of space altimetry and space gravimetry measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its uncertainty. The mean EEI value is estimated at +0.74±0.22 W m−2 (90 % confidence level) between August 2002 and August 2016. Comparisons against estimates based on Argo data and on CERES measurements show good agreement within the error bars of the global mean and the time variations in EEI. Further improvements are needed to reduce uncertainties and to improve the time series, especially at interannual timescales. The space geodetic OHC-EEI product (version 2.1) is freely available at https://doi.org/10.24400/527896/a01-2020.003 (Magellium/LEGOS, 2020).