Published in

American Association for the Advancement of Science, Science Advances, 4(8), 2022

DOI: 10.1126/sciadv.abg9215

Links

Tools

Export citation

Search in Google Scholar

Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg 2+ –bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo–electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis . Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1–2 of one monomer and TM5′–6′ of the other. They induce a rearrangement of TM1–2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.