Published in

BioMed Central, Journal of Nanobiotechnology, 1(20), 2022

DOI: 10.1186/s12951-022-01253-8

Links

Tools

Export citation

Search in Google Scholar

In-situ TiO2-x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Sonodynamic therapy (SDT) has emerged as a noninvasive therapeutic modality that involves sonosensitizers and low-intensity ultrasound. However, owing to the rapid recombination of charge carriers, most of the sonosensitizers triggered poor reactive oxygen species (ROS) generation, resulting in unsatisfactory sonodynamic therapeutic effects. Results Herein, a photo/sono-responsive nanoplatform was developed through the in-situ systhesis of TiO2-x on the surface of two-dimensional MXene (titanium carbide, Ti3C2) for photoacoustic/photothermal bimodal imaging-guided near-infrared II (NIR-II) photothermal enhanced SDT of tumor. Because of several oxygen vacancies and smaller size (~ 10 nm), the in-situ formed TiO2-x nanoparticles possessed narrow band gap (2.65 eV) and high surface area, and thus served as a charge trap to restrict charge recombination under ultrasound (US) activation, resulting in enhanced sonodynamic ROS generation. Moreover, Ti3C2 nanosheets induced extensive localized hyperthermia relieves tumor hypoxia by accelerating intratumoral blood flow and tumor oxygenation, and thus further strengthened the efficacy of SDT. Upon US/NIR-II laser dual-stimuli, Ti3C2@TiO2-x nanoplatform triggered substantial cellular killing in vitro and complete tumor eradication in vivo, without any tumor recurrence and systemic toxicity. Conclusion Our work presents the promising design of photo/sono-responsive nanoplatform for cancer nanotheranostics. Graphical Abstract