Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Letters, 2(925), p. L13, 2022

DOI: 10.3847/2041-8213/ac4cb3

Links

Tools

Export citation

Search in Google Scholar

Double-power-law Feature of Energetic Particles Accelerated at Coronal Shocks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Recent observations have shown that in many large solar energetic particle (SEP) events the event-integrated differential spectra resemble double power laws. We perform numerical modeling of particle acceleration at coronal shocks propagating through a streamer-like magnetic field by solving the Parker transport equation, including protons and heavier ions. We find that for all ion species the energy spectra integrated over the simulation domain can be described by a double power law, and the break energy depends on the ion charge-to-mass ratio as E B ∼ (Q/A) α , with α varying from 0.16 to 1.2 by considering different turbulence spectral indices. We suggest that the double-power-law distribution may emerge as a result of the superposition of energetic particles from different source regions where the acceleration rates differ significantly due to particle diffusion. The diffusion and mixing of energetic particles could also provide an explanation for the increase of Fe/O at high energies as observed in some SEP events. Although further mixing processes may occur, our simulations indicate that either a power-law break or rollover can occur near the Sun and predict that the spectral forms vary significantly along the shock front, which may be examined by upcoming near-Sun SEP measurements from the Parker Solar Probe and Solar Orbiter.