Published in

De Gruyter, Wood Research and Technology, 3(69), p. 313-319, 2014

DOI: 10.1515/hf-2014-0031

Links

Tools

Export citation

Search in Google Scholar

Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: mechanical and viscoelastic properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Composites have been prepared with polypropylene (PP) as a matrix and pine flours, either thermally treated (Wtr) or not (W), as fillers resulting in wood plastic composites (WPCs). The treatment by retification at 280° mainly elevates the hydrophobicity of wood. The WPCs were fabricated with a co-rotating twin-screw extruder with the screw speeds of 500 and 1200 rpm and specimens were prepared by injection molding. Viscoelastic behavior, tensile test and Charpy impact test of Wtr PC were compared with PP and WPC. Wtr PC has a better dispersion and highest tensile modulus. As expected, a decrease in elongation at break and impact strength was observed for all composites. Processing at 1200 rpm improved by 60% the Young modulus of the WPC compared to 500 rpm, whereas 500 rpm was enough to obtain the highest modulus for Wtr PC.