Published in

IOP Publishing, Measurement Science and Technology, 6(33), p. 062002, 2022

DOI: 10.1088/1361-6501/ac51f1

Links

Tools

Export citation

Search in Google Scholar

State-of-the-art nanotechnologies used in the development of SARS-CoV-2 biosensors: a review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The coronavirus disease (COVID-19) pandemic has spread to nearly every corner of the globe, significantly impacting economies and societies. Despite advances in detection technologies that target viral pathogens, all countries are facing an unprecedented need to perform biosensing in a rapid, sensitive, selective, and reliable way to deal with global and urgent problems. To date, the reverse transcription-polymerase chain reaction has been the gold-standard method for COVID-19 diagnosis. However, it requires complex facilities and elaborate training and is hampered by limited testing capacity and delayed results. Herein, we review state-of-the-art research into point-of-care biosensors for early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. We include a general description of the nanotechnological techniques used to develop biosensors, along with the latest research into various biosensors for SARS-CoV-2 detection and a summary of their limitations for practical use. Finally, we discuss future perspectives and directions. This critical review offers the biosensor community insight into how to progress the present research, which may streamline the removal of the problems facing rapid and large-scale SARS-CoV-2 screening.