Published in

Nature Research, Nature Physics, 2(18), p. 160-166, 2022

DOI: 10.1038/s41567-021-01463-1

Links

Tools

Export citation

Search in Google Scholar

Direct neutrino-mass measurement with sub-electronvolt sensitivity

Journal article published in 2022 by and M. Aker, A. Beglarian, J. Behrens, A. Berlev, U. Besserer, B. Bieringer, F. Block, S. Bobien, M. Böttcher, B. Bornschein, L. Bornschein, T. Brunst, T. S. Caldwell, R. M. D. Carney, L. La Cascio and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSince the discovery of neutrino oscillations, we know that neutrinos have non-zero mass. However, the absolute neutrino-mass scale remains unknown. Here we report the upper limits on effective electron anti-neutrino mass, mν, from the second physics run of the Karlsruhe Tritium Neutrino experiment. In this experiment, mν is probed via a high-precision measurement of the tritium β-decay spectrum close to its endpoint. This method is independent of any cosmological model and does not rely on assumptions whether the neutrino is a Dirac or Majorana particle. By increasing the source activity and reducing the background with respect to the first physics campaign, we reached a sensitivity on mν of 0.7 eV c–2 at a 90% confidence level (CL). The best fit to the spectral data yields ${{\mbox{}}}{m}_{ν }^{2}{{\mbox{}}}$ m ν 2 = (0.26 ± 0.34) eV2 c–4, resulting in an upper limit of mν < 0.9 eV c–2 at 90% CL. By combining this result with the first neutrino-mass campaign, we find an upper limit of mν < 0.8 eV c–2 at 90% CL.