Published in

Future Medicine, BioTechniques, 3(72), p. 104-109, 2022

DOI: 10.2144/btn-2021-0036

Links

Tools

Export citation

Search in Google Scholar

Comparison of optimized methodologies for isolating nuclei from esophageal tissue

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Single-nuclei RNA sequencing allows single cell-based analysis in frozen tissue, ameliorating cell recovery biases associated with enzymatic dissociation methods. The authors present two optimized methods for isolating and sequencing nuclei from esophageal tissue using a commercial EZ and citric acid (CA)-based method. Despite high endogenous RNase activity, these protocols produced libraries of expected fragment length (average length EZ: 745 bp; CA: 1232 bp) with comparable complexity (median Transcript/Gene number, EZ: 496/254; CA: 483/256). CA nuclei showed a higher proportion of ribosomal gene reads, potentially reflecting co-isolation of nuclei and adherent ribosomes. The authors identified 11 cell lineages in the combined datasets, with differences in cell type recovery between the two methods, providing utility dependent on experimental needs.