Published in

Karger Publishers, Caries Research, 2(56), p. 138-145, 2022

DOI: 10.1159/000522490

Links

Tools

Export citation

Search in Google Scholar

Acquired Pellicle Engineering Using a Combination of Organic (Sugarcane Cystatin) and Inorganic (Sodium Fluoride) Components against Dental Erosion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study evaluated the combination of a sugarcane cystatin (CaneCPI-5) and sodium fluoride (NaF) in acquired pellicle engineering for the prevention of dental erosion in vitro. Seventy-five human enamel specimens were prepared and divided into 5 treatment groups (<i>n</i> = 15/group): Deionized water (Control); Elmex™ (SnCl<sub>2</sub>/NaF/AmF); 0.1 mg/mL CaneCPI-5; 500 ppm NaF; and CaneCPI-5+NaF (Combination). The specimens were individually treated (200 μL; 2 min; 37°C), then incubated in human saliva (200 μL; 1 h, at 37°C) for acquired pellicle formation. Afterward, the specimens were submitted to an erosive challenge (1% citric acid [CR], pH 3.6, 10 mL, 2 min, 25 °C). This sequence was conducted 5 times. Percentage of surface microhardness change (%SMC), relative surface reflection intensity (rSRI), and calcium released to the CR were measured and analyzed by one-way ANOVA followed by Tukey’s test (<i>p</i> &#x3c; 0.05). In general, all the treatments (SnCl<sub>2</sub>/NaF/AmF, CaneCPI-5, NaF, and Combination) significantly protected the enamel when compared the control group. Regarding %SMC and rSRI, the Combination was the most effective treatment, reducing the %SMC significantly (<i>p</i> &#x3c; 0.01) when compared to all the other treatments, although this difference was not significant in the CR analysis. All treatments demonstrated a protective effect on enamel against dental erosion; however, the combination of CaneCPI-5 with NaF showed a greater protection.