Published in

MDPI, International Journal of Environmental Research and Public Health, 4(19), p. 2259, 2022

DOI: 10.3390/ijerph19042259

Links

Tools

Export citation

Search in Google Scholar

Effects of Environmental Exposure to Cadmium and Lead on the Risks of Diabetes and Kidney Dysfunction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Environmental exposure to cadmium (Cd) or lead (Pb) is independently associated with increased risks of type 2 diabetes, and chronic kidney disease. The aim of this study was to examine the effects of concurrent exposure to these toxic metals on the risks of diabetes and kidney functional impairment. The Cd and Pb exposure levels among study subjects were low to moderate, evident from the means for blood concentrations of Cd and Pb ([Cd]b and [Pb]b) of 0.59 µg/L and 4.67 µg/dL, respectively. Of 176 study subjects (mean age 60), 71 (40.3%) had abnormally high fasting plasma glucose levels. Based on their [Cd]b and [Pb]b, 53, 71, and 52 subjects were assigned to Cd and Pb exposure profiles 1, 2, and 3, respectively. The diagnosis of diabetes was increased by 4.2-fold in those with an exposure profile 3 (p = 0.002), and by 2.9-fold in those with the estimated glomerular filtration (eGFR) ≤ 60 mL/min/1.73 m2 (p = 0.029). The prevalence odds ratio (POR) for albuminuria was increased by 5-fold in those with plasma glucose levels above kidney threshold of 180 mg/dL (p = 0.014), and by 3.1-fold in those with low eGFR) (p = 0.050). Collectively, these findings suggest that the Cd and Pb exposure profiles equally impact kidney function and diabetes risk.