Published in

MDPI, Coatings, 11(13), p. 1944, 2023

DOI: 10.3390/coatings13111944

Links

Tools

Export citation

Search in Google Scholar

Nanohydroxyapatite Loaded with 5-Fluorouracil and Calendula officinalis L. Plant Extract Rich in Myo-Inositols for Treatment of Ovarian Cancer Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, the hydroxyapatite (HAp) in the form of nanoparticles was synthesized through the wet co-precipitation method and loaded with plant extract from Calendula officinalis L. rich in biologically active myo-inositol, and the 5-fluorouracil anticancer drug. The obtained nanomaterials have rod-like structures approx. 30 nm in diameter and 100 nm in length. FT-IR analysis results proved the immobilization of biologically active compounds. The loading of plant extract into the carrier improved the stability of colloidal suspension, which was confirmed with turbidimetry. The composite modified with calendula extract and drug (HAp@Cal@5-flu) effectively scavenges the DPPH radicals, with a radical scavenging activity (RSA) of about 20.0 ± 1.3%. The effect is supported by the DFT calculations of the HOMO-LUMO, presenting the chemical reactivity of the molecules loaded into the HAp. The in vitro cytotoxicity results on SKOV-3 ovarian cancer cells show the pronounced cytotoxic effect of the HAp@Cal@5-flu. The calendula extract loading into the carrier provided better interactions with the tumorous biomimetic membranes studied with a Langmuir trough, making it a promising material in nano-biomedicine, including drug delivery and targeted cancer treatment.