Published in

MDPI, Water, 4(14), p. 648, 2022

DOI: 10.3390/w14040648

Links

Tools

Export citation

Search in Google Scholar

Assessing the Groundwater Reserves of the Udaipur District, Aravalli Range, India, Using Geospatial Techniques

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Population increase has placed ever-increasing demands on the available groundwater (GW) resources, particularly for intensive agricultural activities. In India, groundwater is the backbone of agriculture and drinking purposes. In the present study, an assessment of groundwater reserves was carried out in the Udaipur district, Aravalli range, India. It was observed that the principal aquifer for the availability of groundwater in the studied area is quartzite, phyllite, gneisses, schist, and dolomitic marble, which occur in unconfined to semi-confined zones. Furthermore, all primary chemical ingredients were found within the permissible limit, including granum. We also found that the average annual rainfall days in a year in the study area was 30 from 1957 to 2020, and it has been found that there are chances to receive surplus rainfall once in every five deficit rainfall years. Using integrated remote sensing, GIS, and a field-based spatial modeling approach, it was found that the dynamic GW reserves of the area are 637.42 mcm/annum, and the total groundwater draft is 639.67 mcm/annum. The deficit GW reserves are 2.25 mcm/annum from an average rainfall of 627 mm, hence the stage of groundwater development is 100.67% and categorized as over-exploited. However, as per the relationship between reserves and rainfall events, surplus reserves are available when rainfall exceeds 700 mm. We conclude that enough static GW reserves are available in the studied area to sustain the requirements of the drought period. For the long-term sustainability of groundwater use, controlling groundwater abstraction by optimizing its use, managing it properly through techniques such as sprinkler and drip irrigation, and achieving more crop-per-drop schemes, will go a long way to conserving this essential reserve, and create maximum groundwater recharge structures.