Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Microorganisms, 3(12), p. 616, 2024

DOI: 10.3390/microorganisms12030616

Links

Tools

Export citation

Search in Google Scholar

Comparative Analysis of Plant Growth-Promoting Rhizobacteria’s Effects on Alfalfa Growth at the Seedling and Flowering Stages under Salt Stress

Journal article published in 2024 by Xixi Ma ORCID, Cuihua Huang, Jun Zhang, Jing Pan ORCID, Qi Guo, Hui Yang, Xian Xue ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Alfalfa (Medicago sativa L.), a forage legume known for its moderate salt–alkali tolerance, offers notable economic and ecological benefits and aids in soil amelioration when cultivated in saline–alkaline soils. Nonetheless, the limited stress resistance of alfalfa could curtail its productivity. This study investigated the salt tolerance and growth-promoting characteristics (in vitro) of four strains of plant growth-promoting rhizobacteria (PGPR) that were pre-selected, as well as their effects on alfalfa at different growth stages (a pot experiment). The results showed that the selected strains belonged to the genera Priestia (HL3), Bacillus (HL6 and HG12), and Paenibacillus (HG24). All four strains exhibited the ability to solubilize phosphate and produce indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Among them, except for strain HG24, the other strains could tolerate 9% NaCl stress. Treatment with 100 mM NaCl consistently decreased the IAA production levels of the selected strains, but inconsistent changes (either enhanced or reduced) in terms of phosphate solubilization, ACC deaminase, and exopolysaccharides (EPS) production were observed among the strains. During the various growth stages of alfalfa, PGPR exhibited different growth-promoting effects: at the seedling stage, they enhanced salt tolerance through the induction of physiological changes; at the flowering stage, they promoted growth through nutrient acquisition. The current findings suggest that strains HL3, HL6, and HG12 are effective microbial inoculants for alleviating salt stress in alfalfa plants in arid and semi-arid regions. This study not only reveals the potential of indigenous salt-tolerant PGPR in enhancing the salt tolerance of alfalfa but also provides new insights into the mechanisms of action of PGPR.