Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 2(17), p. e0263268, 2022

DOI: 10.1371/journal.pone.0263268

Links

Tools

Export citation

Search in Google Scholar

Significance of eggshell morphology as an additional tool to distinguish species of sand flies (Diptera: Psychodidae: Phlebotominae)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Morphological characteristics of eggshells are important in sand fly ootaxonomy. In this study, eggshells from Phlebotomus stantoni Newstead, Sergentomyia khawi (Raynal), and Grassomyia indica (Theodor) sand flies collected in Chiang Mai province, Thailand were examined and characterized using light microscopy (LM) and scanning electron microscopy (SEM). Then, eggshell morphology of these three species was described for the first time. Each gravid female was forced to lay eggs by decapitation and the eggs were collected for SEM analysis. Egg laying females were identified by morphological examination and molecular typing using cytochrome b (Cytb) as a molecular marker. The chorionic sculpturing of Ph. stantoni eggs combines two patterns on the same egg: unconnected parallel ridges and reticular patterns. Sergentomyia khawi and Gr. indica have similar chorionic polygonal patterns, but their exochorionic morphology and aeropylar area are different. Results indicate that eggshell morphological characteristics such as chorionic pattern, exochorionic morphology, inter-ridge/boundary area, aeropylar area (including the number of aeropyles) and basal layer, can be useful to develop morphological identification keys of eggs. These can serve as an additional tool to distinguish species of sand flies. In addition, the chorionic sculpturing of the eggs of the three species of sand flies observed by LM is useful for species identification in gravid females with spermathecae obscured by eggs.