Published in

Optica, Optics Letters, 7(47), p. 1610, 2022

DOI: 10.1364/ol.446752

Links

Tools

Export citation

Search in Google Scholar

Erbium chloride silicate-based vertical cavity surface-emitting laser at the near-infrared communication band

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Silicon-based integrated optoelectronics has become a hotspot in the field of computers and information processing systems. An integrated coherent light source on-chip with a small footprint and high efficiency is one of the most important unresolved devices. Here, we realize a silicon-based vertical cavity surface-emitting laser in the near-infrared communication band by making efforts in both controlled preparation of high-gain erbium silicate materials and novel design of high optical feedback microcavity. Single-crystal erbium/ytterbium silicate microplates with erbium concentration as high as 5 × 1021 cm−3 are controlled prepared by a chemical vapor deposition method. They can produce strong luminescence with quite a long lifetime (2.3 ms) at the wavelength of 1.5 μm. By embedding the erbium silicate microplates between two dielectric Bragg reflectors, we construct a vertical cavity surface-emitting laser at 1.5 μm, with a lasing threshold as low as 20 μJ/cm2 and Q factor of nearly 2000. Our study provides a new pathway to achieve a sub-micrometer coherent light source for optical communication.