Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Foods, 5(11), p. 708, 2022

DOI: 10.3390/foods11050708

Links

Tools

Export citation

Search in Google Scholar

High Prevalence of Klebsiella pneumoniae in Greek Meat Products: Detection of Virulence and Antimicrobial Resistance Genes by Molecular Techniques

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The presence of antimicrobial-resistant pathogens such as Klebsiella pneumoniae strains in the food supply is dangerous. The aim of this study was to assess the prevalence of Klebsiella pneumonia strains in Greek meat products and evaluate their phenotypes and genotypes. Methods: One hundred and ten meat specimens were cultured for the isolation of K. pneumoniae. In positive specimens, PCR (Polymerase Chain Reaction) analysis was performed to confirm the presence of K. pneumoniae. Genotypic and phenotypic evaluation of the isolated strains included multiplex immunoassay for the detection of carbapenemases, and PCR screening for the detection of resistance and virulence genes. Results:K. pneumoniae strains were recovered in 90 (81.8%) meat samples. The ecpA gene was identified in 30 (33.3%) isolates, while the fimH-1 and mrkA genes were present in 15 (16.7%) and 65 (72.2%) isolates, respectively. Sixty-five K. pneumoniae isolates (72.2%) were found to carry at least one resistance gene; of these, the blaNDM-like was the most commonly identified gene in 40 (61.5%) isolates, followed by the blaOXA-48 like gene in 20 isolates (30.8%). Conclusions: A high frequency of foodborne K. pneumoniae in Greece was found. Our results indicate that most strains carried resistance and virulence genes, indicating a high pathogenic potential and a significant risk to human health.