Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 4(22), p. 2769-2793, 2022

DOI: 10.5194/acp-22-2769-2022

Links

Tools

Export citation

Search in Google Scholar

Factors affecting precipitation formation and precipitation susceptibility of marine stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast Atlantic

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aerosol–cloud–precipitation interactions (ACIs) provide the greatest source of uncertainties in predicting changes in Earth's energy budget due to poor representation of marine stratocumulus and the associated ACIs in climate models. Using in situ data from 329 cloud profiles across 24 research flights from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign in September 2016, August 2017, and October 2018, it is shown that contact between above-cloud biomass burning aerosols and marine stratocumulus over the Southeast Atlantic Ocean was associated with precipitation suppression and a decrease in the precipitation susceptibility (So) to aerosols. The 173 “contact” profiles with aerosol concentration (Na) greater than 500 cm−3 within 100 m above cloud tops had a 50 % lower precipitation rate (Rp) and a 20 % lower So, on average, compared to 156 “separated” profiles with Na less than 500 cm−3 up to at least 100 m above cloud tops. Contact and separated profiles had statistically significant differences in droplet concentration (Nc) and effective radius (Re) (95 % confidence intervals from a two-sample t test are reported). Contact profiles had 84 to 90 cm−3 higher Nc and 1.4 to 1.6 µm lower Re compared to separated profiles. In clean boundary layers (below-cloud Na less than 350 cm−3), contact profiles had 25 to 31 cm−3 higher Nc and 0.2 to 0.5 µm lower Re. In polluted boundary layers (below-cloud Na exceeding 350 cm−3), contact profiles had 98 to 108 cm−3 higher Nc and 1.6 to 1.8 µm lower Re. On the other hand, contact and separated profiles had statistically insignificant differences between the average liquid water path, cloud thickness, and meteorological parameters like surface temperature, lower tropospheric stability, and estimated inversion strength. These results suggest the changes in cloud microphysical properties were driven by ACIs rather than meteorological effects, and adjustments to existing relationships between Rp and Nc in model parameterizations should be considered to account for the role of ACIs.