Published in

IOP Publishing, New Journal of Physics, 3(24), p. 033039, 2022

DOI: 10.1088/1367-2630/ac5a86

Links

Tools

Export citation

Search in Google Scholar

Nonlinear Fourier transform assisted high-order soliton characterization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Nonlinear Fourier transform (NFT), based on the nonlinear Schrödinger equation, is implemented for the description of soliton propagation, and in particular focused on propagation of high-order solitons. In nonlinear frequency domain, a high-order soliton has multiple eigenvalues depending on the soliton amplitude and pulse-width. During the propagation along the standard single mode fiber (SSMF), their eigenvalues remain constant, while the corresponding discrete spectrum rotates along with the SSMF transmission. Consequently, we can distinguish the soliton order based on its eigenvalues. Meanwhile, the discrete spectrum rotation period is consistent with the temporal evolution period of the high-order solitons. The discrete spectrum contains nearly 99.99% energy of a soliton pulse. After inverse-NFT on discrete spectrum, soliton pulse can be reconstructed, illustrating that the eigenvalues can be used to characterize soliton pulse with good accuracy. This work shows that soliton characteristics can be well described in the nonlinear frequency domain. Moreover, as a significant supplement to the existing means of characterizing soliton pulses, NFT is expected to be another fundamental optical processing method besides an oscilloscope (measuring pulse time domain information) and a spectrometer (measuring pulse frequency domain information).