Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 11(119), 2022

DOI: 10.1073/pnas.2112386119

Links

Tools

Export citation

Search in Google Scholar

Metamorphism-facilitated faulting in deforming orthopyroxene: Implications for global intermediate-depth seismicity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance The exothermic metamorphic reaction in orthopyroxene (Opx), a major component of oceanic lithospheric mantle, is shown to trigger brittle failure in laboratory deformation experiments under conditions where garnet exsolution takes place. The reaction product is an extremely fine-grained material, forming narrow reaction zones that are mechanically weak, thereby facilitating macroscopic faulting. Oceanic subduction zones are characterized by two separate bands of seismicity, known as the double seismic zone. The upper band of seismicity, located in the oceanic crust, is well explained by dehydration-induced mechanical instability. Our newly discovered metamorphism-induced mechanical instability provides an alternative physical mechanism for earthquakes in the lower band of seismicity (located in the oceanic lithospheric mantle), with no requirement of hydration/dehydration processes.