Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, JMIR Medical Informatics, 3(10), p. e32313, 2022

DOI: 10.2196/32313

Links

Tools

Export citation

Search in Google Scholar

Predicting Long-term Survival After Allogeneic Hematopoietic Cell Transplantation in Patients With Hematologic Malignancies: Machine Learning–Based Model Development and Validation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Scoring systems developed for predicting survival after allogeneic hematopoietic cell transplantation (HCT) show suboptimal prediction power, and various factors affect posttransplantation outcomes. Objective A prediction model using a machine learning–based algorithm can be an alternative for concurrently applying multiple variables and can reduce potential biases. In this regard, the aim of this study is to establish and validate a machine learning–based predictive model for survival after allogeneic HCT in patients with hematologic malignancies. Methods Data from 1470 patients with hematologic malignancies who underwent allogeneic HCT between December 1993 and June 2020 at Asan Medical Center, Seoul, South Korea, were retrospectively analyzed. Using the gradient boosting machine algorithm, we evaluated a model predicting the 5-year posttransplantation survival through 10-fold cross-validation. Results The prediction model showed good performance with a mean area under the receiver operating characteristic curve of 0.788 (SD 0.03). Furthermore, we developed a risk score predicting probabilities of posttransplantation survival in 294 randomly selected patients, and an agreement between the estimated predicted and observed risks of overall death, nonrelapse mortality, and relapse incidence was observed according to the risk score. Additionally, the calculated score demonstrated the possibility of predicting survival according to the different transplantation-related factors, with the visualization of the importance of each variable. Conclusions We developed a machine learning–based model for predicting long-term survival after allogeneic HCT in patients with hematologic malignancies. Our model provides a method for making decisions regarding patient and donor candidates or selecting transplantation-related resources, such as conditioning regimens.