Published in

American Institute of Physics, Applied Physics Letters, 10(120), p. 102401, 2022

DOI: 10.1063/5.0082724

Links

Tools

Export citation

Search in Google Scholar

Fast long-wavelength exchange spin waves in partially compensated Ga:YIG

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Spin waves in yttrium iron garnet (YIG) nano-structures attract increasing attention from the perspective of novel magnon-based data processing applications. For short wavelengths needed in small-scale devices, the group velocity is directly proportional to the spin-wave exchange stiffness constant [Formula: see text]. Using wave vector resolved Brillouin light scattering spectroscopy, we directly measure [Formula: see text] in Ga-substituted YIG thin films and show that it is about three times larger than for pure YIG. Consequently, the spin-wave group velocity overcomes the one in pure YIG for wavenumbers k > 4 rad/ μm, and the ratio between the velocities reaches a constant value of around 3.4 for all k > 20 rad/ μm. As revealed by vibrating-sample magnetometry and ferromagnetic resonance spectroscopy, Ga:YIG films with thicknesses down to 59 nm have a low Gilbert damping ([Formula: see text]), a decreased saturation magnetization [Formula: see text] mT, and a pronounced out-of-plane uniaxial anisotropy of about [Formula: see text] mT, which leads to an out-of-plane easy axis. Thus, Ga:YIG opens access to fast and isotropic spin-wave transport for all wavelengths in nano-scale systems independently of dipolar effects.