Published in

Hindawi, Journal of Healthcare Engineering, (2022), p. 1-17, 2022

DOI: 10.1155/2022/3264367

Links

Tools

Export citation

Search in Google Scholar

Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brain tumor classification is a very important and the most prominent step for assessing life-threatening abnormal tissues and providing an efficient treatment in patient recovery. To identify pathological conditions in the brain, there exist various medical imaging technologies. Magnetic Resonance Imaging (MRI) is extensively used in medical imaging due to its excellent image quality and independence from ionizing radiations. The significance of deep learning, a subset of artificial intelligence in the area of medical diagnosis applications, has macadamized the path in rapid developments for brain tumor detection from MRI to higher prediction rate. For brain tumor analysis and classification, the convolution neural network (CNN) is the most extensive and widely used deep learning algorithm. In this work, we present a comparative performance analysis of transfer learning-based CNN-pretrained VGG-16, ResNet-50, and Inception-v3 models for automatic prediction of tumor cells in the brain. Pretrained models are demonstrated on the MRI brain tumor images dataset consisting of 233 images. Our paper aims to locate brain tumors with the utilization of the VGG-16 pretrained CNN model. The performance of our model will be evaluated on accuracy. As an outcome, we can estimate that the pretrained model VGG-16 determines highly adequate results with an increase in the accuracy rate of training and validation.