Published in

Oxford University Press, NAR Genomics and Bioinformatics, 1(4), 2022

DOI: 10.1093/nargab/lqac021

Links

Tools

Export citation

Search in Google Scholar

Identification of chromatin loops from Hi-C interaction matrices by CTCF–CTCF topology classification

Journal article published in 2022 by Silvia Galan ORCID, François Serra, Marc A. Marti-Renom
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Genome-wide profiling of long-range interactions has revealed that the CCCTC-Binding factor (CTCF) often anchors chromatin loops and is enriched at boundaries of the so-called Topologically Associating Domains, which suggests that CTCF is essential in the 3D organization of chromatin. However, the systematic topological classification of pairwise CTCF–CTCF interactions has not been yet explored. Here, we developed a computational pipeline able to classify all CTCF–CTCF pairs according to their chromatin interactions from Hi-C experiments. The interaction profiles of all CTCF–CTCF pairs were further structurally clustered using self-organizing feature maps and their functionality characterized by their epigenetic states. The resulting clusters were then input to a convolutional neural network aiming at the de novo detecting chromatin loops from Hi-C interaction matrices. Our new method, called LOOPbit, is able to automatically detect significant interactions with a higher proportion of enhancer-promoter loops compared to other callers. Our highly specific loop caller adds a new layer of detail to the link between chromatin structure and function.