Published in

The Company of Biologists, Journal of Experimental Biology, Suppl_1(225), 2022

DOI: 10.1242/jeb.243374

Links

Tools

Export citation

Search in Google Scholar

The mechanics of acoustic signal evolution in field crickets

Journal article published in 2022 by Vamsy Godthi ORCID, Rohini Balakrishnan ORCID, Rudra Pratap ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Field crickets (Family Gryllidae, Subfamily Gryllinae) typically produce tonal calls with carrier frequencies in the range 3–8 kHz. In this study, we explored the use of a finite element model (FEM) of the stridulatory apparatus of a field cricket, Gryllus bimaculatus, based on experimental measurements of resonator geometry and mechanical properties, to predict the measured call carrier frequencies of eight other field cricket species, ranging between 3 and 7 kHz. The model allowed accurate predictions of carrier frequencies for all eight species to within a few hundred hertz from morphological measurements of their resonators. We then used the model to explore the plausible evolutionary design space for field cricket call carrier frequency along the axes of resonator size and thickness, and mapped the locations of the nine experimentally measured species in this design space. Although the nine species spanned the evolutionarily conserved spectrum of carrier frequency and body size in field crickets, they were clustered in a small region of the available design space. We then explored the reasons for this apparent evolutionary constraint on field cricket carrier frequencies at both the lower and higher limit. We found that body size and sound radiation efficiency were the main constraints at the lower limits, whereas the energetics of stridulation using the clockwork mechanism may pose a constraint at higher frequencies.