Published in

American Association for the Advancement of Science, Science, 6585(375), p. 1169-1172, 2022

DOI: 10.1126/science.abm5174

Links

Tools

Export citation

Search in Google Scholar

Magmatic water content controls the pre-eruptive depth of arc magmas

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vanguard efforts in forecasting volcanic eruptions are turning to physics-based models, which require quantitative estimates of magma conditions during pre-eruptive storage. Below active arc volcanoes, observed magma storage depths vary widely (~0 to 20 kilometers) and are commonly assumed to represent levels of neutral buoyancy. Here we show that geophysically observed magma depths (6 ± 3 kilometers) are greater than depths of neutral buoyancy, ruling out this commonly assumed control. Observed depths are instead consistent with predicted depths of water degassing. Intrinsically wetter magmas degas water and crystallize deeper than dry magmas, resulting in viscosity increases that lead to deeper stalling of ascending magma. The water–depth relationship provides a critical constraint for forecasting models by connecting depth of eruption initiation to its volatile fuel.