Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Data, 1(9), 2022

DOI: 10.1038/s41597-022-01192-x

Links

Tools

Export citation

Search in Google Scholar

A building height dataset across China in 2017 estimated by the spatially-informed approach

Journal article published in 2022 by Chen Yang ORCID, Shuqing Zhao ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAs a fundamental aspect of the urban form, building height is a key attribute for reflecting human activities and human-environment interactions in the urban context. However, openly accessible building height maps covering the whole China remain sorely limited, particularly for spatially informed data. Here we developed a 1 km × 1 km resolution building height dataset across China in 2017 using Spatially-informed Gaussian process regression (Si-GPR) and open-access Sentinel-1 data. Building height estimation was performed using the spatially-explicit Gaussian process regression (GPR) in 39 major Chinese cities where the spatially explicit and robust cadastral data are available and the spatially-implicit GPR for the remaining 304 cities, respectively. The cross-validation results indicated that the proposed Si-GPR model overall achieved considerable estimation accuracy (R2 = 0.81, RMSE = 4.22 m) across the entire country. Because of the implementation of local modelling, the spatially-explicit GPR outperformed (R2 = 0.89, RMSE = 2.82 m) the spatially-implicit GPR (R2 = 0.72, RMSE = 6.46 m) for all low-rise, mid-rise, and high-rise buildings. This dataset, with extensive-coverage and high-accuracy, can support further studies on the characteristics, causes, and consequences of urbanization.