Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(512), p. 1091-1110, 2022

DOI: 10.1093/mnras/stab2860

Links

Tools

Export citation

Search in Google Scholar

The Nearby Evolved Stars Survey II: Constructing a volume-limited sample and first results from the James Clerk Maxwell Telescope

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The Nearby Evolved Stars Survey (NESS) is a volume-complete sample of ∼850 Galactic evolved stars within 3 kpc at (sub-)mm wavelengths, observed in the CO J = (2–1) and (3–2) rotational lines, and the sub-mm continuum, using the James Clark Maxwell Telescope and Atacama Pathfinder Experiment. NESS consists of five tiers, based on distances and dust-production rate (DPR). We define a new metric for estimating the distances to evolved stars and compare its results to Gaia EDR3. Replicating other studies, the most-evolved, highly enshrouded objects in the Galactic Plane dominate the dust returned by our sources, and we initially estimate a total DPR of 4.7 × 10−5 M⊙ yr−1 from our sample. Our sub-mm fluxes are systematically higher and spectral indices are typically shallower than dust models typically predict. The 450/850 $μ$m spectral indices are consistent with the blackbody Rayleigh–Jeans regime, suggesting a large fraction of evolved stars have unexpectedly large envelopes of cold dust.