Published in

Oxford University Press, Journal of Analytical Toxicology, 1(47), p. 1-25, 2022

DOI: 10.1093/jat/bkac017

Links

Tools

Export citation

Search in Google Scholar

The Evolution Toward Designer Benzodiazepines in Drug-Facilitated Sexual Assault Cases

Journal article published in 2022 by Mireia Pérez Orts, Arian van Asten, Isabelle Kohler ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Drug-facilitated sexual assault (DFSA) is a crime where the victim is unable to provide sexual consent due to incapacitation resulting from alcohol or drug consumption. Due to the large number of substances possibly used in DFSA, including illicit, prescription and over-the-counter drugs, DFSA faces many toxicological challenges. Benzodiazepines (BZDs) are ideal candidates for DFSA, as they are active at low doses, have a fast onset of action and can be easily administered orally. The last decade has seen the emergence of designer benzodiazepines (DBZDs), which show slight modifications compared with BZDs and similar pharmacological effects but are not controlled under the international drug control system. DBZDs represent an additional challenge due to the number of new entities regularly appearing in the market, their possibly higher potency and the limited knowledge available on their pharmacokinetic and pharmacodynamics properties. Many BZDs and DBZDs have a short half-life, leading to rapid metabolism and excretion. The low concentrations and short time windows for the detection of BZD in body fluids require the use of highly sensitive analysis methods to enable the detection of drugs and their respective metabolites. This review discusses the current state of the toxicological analysis of BZDs and DBZDs in forensic casework and their pharmacokinetic properties (i.e., absorption, distribution, metabolism, and elimination), as well as their analysis in biosamples typically encountered in DFSA (i.e., blood, urine and hair).