Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 12(119), 2022

DOI: 10.1073/pnas.2117401119

Links

Tools

Export citation

Search in Google Scholar

Interleukin-2 superkines by computational design

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SignificanceWhile computational engineering of therapeutic proteins is a desirable goal, in practice the optimization of protein–protein interactions requires substantial experimental intervention. We present here a computational approach that focuses on stabilizing core protein structures rather than engineering the protein–protein interface. Using this approach, we designed thermostabilized interleukin-2 (IL-2) variants that bind tightly to their receptor without experimental optimization, mimicking the properties of the yeast-display engineered IL-2 variant “super-2.” Our results suggest that structure-guided stabilization may be a general method for in silico affinity maturation of protein–protein interactions.