Published in

American Astronomical Society, Astrophysical Journal, 2(927), p. 204, 2022

DOI: 10.3847/1538-4357/ac51ca

Links

Tools

Export citation

Search in Google Scholar

A New Estimate of the Cosmic Star Formation Density from a Radio-selected Sample, and the Contribution of H-dark Galaxies at z ≥ 3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The star formation rate density (SFRD) history of the universe is well constrained up to redshift z ∼ 2. At earlier cosmic epochs, the picture has been largely inferred from UV-selected galaxies (e.g., Lyman-break galaxies; LBGs). However, the inferred star formation rates of LBGs strongly depend on the assumed dust extinction correction, which is not well constrained at high z, while observations in the radio domain are not affected by this issue. In this work we measure the SFRD from a 1.4 GHz selected sample of ∼600 galaxies in the GOODS-N field up to redshift ∼3.5. We take into account the contribution of active galactic nuclei from the infrared-radio correlation. We measure the radio luminosity function, fitted with a modified Schechter function, and derive the SFRD. The cosmic SFRD shows an increase up to z ∼ 2 and then an almost flat plateau up to z ∼ 3.5. Our SFRD is in agreement with those from other far-IR/radio surveys and a factor 2 higher than those from LBG samples. We also estimate that galaxies lacking a counterpart in the HST/WFC3 H-band (H-dark) make up ∼25% of the ϕ-integrated SFRD relative to the full sample at z ∼ 3.2, and up to 58% relative to LBG samples.