Dissemin is shutting down on January 1st, 2025

Published in

MDPI, ChemEngineering, 2(6), p. 25, 2022

DOI: 10.3390/chemengineering6020025

Links

Tools

Export citation

Search in Google Scholar

Heterogeneous Photodegradation for the Abatement of Recalcitrant COD in Synthetic Tanning Wastewater

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Tannery wastewater is considered one of the most contaminated and problematic wastes since it consists of considerable amounts of organic and inorganic compounds. These contaminants result in high chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS). In this work, the heterogeneous photodegradation of recalcitrant COD in wastewater from the tanning industry was investigated, in particular the recalcitrant COD due to the presence of vegetable tannins extracted from mimosa and chestnut and from synthetic tannins based on 4,4′ dihydroxy phenyl sulfone. TiO2 Aeroxide P-25 was employed to study the photodegradation of model molecules in batch conditions under different parameters, namely initial concentration of COD, temperature, and catalyst dose. The maximum COD abatement reached was 60%. Additionally, preliminary kinetic investigation was conducted to derive the main kinetic parameters that can be useful for process scale-up. It was found to be independent of the temperature value but linearly dependent on both catalyst loading and the initial COD value.