Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Electronics, 6(11), p. 962, 2022

DOI: 10.3390/electronics11060962

Links

Tools

Export citation

Search in Google Scholar

High-Isolation MIMO Antenna for 5G Millimeter-Wave Communication Systems

Journal article published in 2022 by Muhammad Bilal, Syeda Iffat Naqvi ORCID, Niamat Hussain ORCID, Yasar Amin ORCID, Nam Kim
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The work in this article presents the design and realization of a low-profile, four-port MIMO antenna supporting fifth-generation (5G) wireless applications operating at a millimeter-Wave (mm-Wave) band. Each MIMO antenna is a 2-element array fed with a corporate feeding network, whereas the single antenna is a patch with a bow-tie slot at the center and slits at the edges. The vertical and horizontal slots are incorporated as a Defected Ground Structure (DGS) to optimize the antenna performance. In addition, a slotted zig-zag decoupling structure is etched from edge to edge on the top side to enhance the isolation. Significant isolation (>−40 dB) is achieved between antenna elements by employing spatial and polarization diversity techniques. The proposed antenna covers the 5G mm-Wave band with a −10 dB bandwidth ranging from 27.6–28.6 GHz, whereas the maximum gain attained for the proposed structure is 12.02 dBi. Moreover, the lower correlation values, higher diversity gain, and lower channel capacity loss make it a suitable contender for 5G MIMO applications at the mm-Wave range.