Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 3(13), 2022

DOI: 10.1038/s41419-022-04701-3

Links

Tools

Export citation

Search in Google Scholar

Osimertinib and anti-HER3 combination therapy engages immune dependent tumor toxicity via STING activation in trans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOver the past decade, immunotherapy delivered novel treatments for many cancer types. However, lung cancer still leads cancer mortality, and non-small-cell lung carcinoma patients with mutant EGFR cannot benefit from checkpoint inhibitors due to toxicity, relying only on palliative chemotherapy and the third-generation tyrosine kinase inhibitor (TKI) osimertinib. This new drug extends lifespan by 9-months vs. second-generation TKIs, but unfortunately, cancers relapse due to resistance mechanisms and the lack of antitumor immune responses. Here we explored the combination of osimertinib with anti-HER3 monoclonal antibodies and observed that the immune system contributed to eliminate tumor cells in mice and co-culture experiments using bone marrow-derived macrophages and human PBMCs. Osimertinib led to apoptosis of tumors but simultaneously, it triggered inositol-requiring-enzyme (IRE1α)-dependent HER3 upregulation, increased macrophage infiltration, and activated cGAS in cancer cells to produce cGAMP (detected by a lentivirally transduced STING activity biosensor), transactivating STING in macrophages. We sought to target osimertinib-induced HER3 upregulation with monoclonal antibodies, which engaged Fc receptor-dependent tumor elimination by macrophages, and STING agonists enhanced macrophage-mediated tumor elimination further. Thus, by engaging a tumor non-autonomous mechanism involving cGAS-STING and innate immunity, the combination of osimertinib and anti-HER3 antibodies could improve the limited therapeutic and stratification options for advanced stage lung cancer patients with mutant EGFR.